Lesson Plan

Branch: Computer B

Semester:IV Year: 2023-24

Course Title: Database Management System	SEE: 3 Hours – Theory
	& Oral Examination
Total Contact Hours: 36 Hours	Duration of SEE: 3 Hrs
SEE Marks: 80 (Theory) + 20 (IA)	
Lesson Plan Author:Dr Sujata Deshmukh/ Prof.Jagruti Nagaonkar	Date: 5.1.24
Checked By: Dr. B.S.Daga	Date:

Syllabus:

Course Code:	Course Title	Credit
CSC403	Database Management System	3

Pr	Prerequisite: Data Structures						
	Course Objectives:						
	Develop entity relationship data model and its mapping to relational model						
2	Learn relational algebra and Formulate SQL queries						
3	Apply normalization techniques to normalize the database						
4	Understand concept of transaction, concurrency control and recovery techniques.						
\Box							
Co	urse Outcomes:						
1	Recognize the need of database management system						
2	Design ER and EER diagram for real life applications						
3	Construct relational model and write relational algebra queries.						
4	Formulate SQL queries						
5	Apply the concept of normalization to relational database design.						
6	Describe the concept of transaction, concurrency and recovery.						

Module		Content	Hrs			
1		Introduction Database Concepts	3			
	1.1	Introduction, Characteristics of databases, File system v/s Database system, Data abstraction and data Independence, DBMS _I system architecture, Database Administrator				
2		utity-Relationship Data Model				
	2.1	The Entity-Relationship (ER) Model: Entity types: Weak and strong entity sets, Entity sets, Types of Attributes, Keys, Relationship constraints: Cardinality and Participation, Extended Entity-Relationship (EER) Model: Generalization, Specialization and Aggregation				
3		Relational Model and relational Algebra	8			
	3.1	Introduction to the Relational Model, relational schema and concept of keys. Mapping the ER and EER Model to the Relational Model, Relational Algebra-operators, Relational Algebra Queries.				
4		Structured Query Lauguage (SQL)	6			
	4.1	Overview of SQL, Data Definition Commands, Integrity constraints: key constraints, Domain Constraints, Referential integrity, check constraints, Data Manipulation commands, Data Control commands, Set and string operations, aggregate function-group by, having, Views in SQL, joins, Nested and complex queries, Triggers				
5		Relational-Database Design	6			
	5.1	Pitfalls in Relational-Database designs, Concept of normalization, Function Dependencies, First Normal Form, 2NF, 3NF, BCNF.				
6		Transactions Management and Concurrency and Recovery	10			
	6.1	Transaction concept, Transaction states, ACID properties, Transaction Control Commands, Concurrent Executions, Serializability-Conflict and View, Concurrency Control: Lock-based, Timestamp-based protocols, Recovery System: Log based recovery, Deadlock handling				

Ter	Textbooks:									
1	Korth, Slberchatz, Sudarshan, Database System Concepts, 6th Edition, McGraw Hill									
2	Elmasri and Navathe, Fundamentals of Database Systems, 5th Edition, Pearson Education									
3	Raghu Ramkrishnan and Johannes Gehrke, Database Management Systems, TMH									
Refe	erences:									
1	Peter Rob and Carlos Coronel, Database Systems Design, Implementation and									
	Managementl, Thomson Learning, 5th Edition.									
2	Dr. P.S. Deshpande, SQL and PL/SQL for Oracle 10g, Black Book, Dreamtech Press.									
3	G. K. Gupta, Database Management Systems, McGraw Hill, 2012									

Assessment:

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- Question paper will comprise of total six questions.
- 2 All question carries equal marks
- 3 Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4 Only Four question need to be solved.
- 5 In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

Use	ful Links
1	https://nptel.ac.in/courses/106/105/106105175/
2	https://swayam.gov.in/nd1_noc19_cs46/preview
3	https://www.classcentral.com/course/swayam-database-management-system-9914
4	https://www.mooc-list.com/tags/dbms

Course Outcomes:

CO-PO Mapping: (BL – Blooms Taxonomy, C – Competency, PI – Performance Indicator)

СО	BL	С	PI	РО	Mapping
CSC 403.1 Recognize the need of Database management system	L1,L2	1.4	1.4.1	PO1	3
CSC 403.2 Design and draw ER and EER diagram for the real life problem and Construct relational model	L5	1.4	1.4.1	PO1	3
		2.1.	2.1.2	PO2	3
		3.2.	3.2.1	PO3	3
		9.3	9.3.1	PO9	2
		10.1	10.1.1	PO10	2
			10.1.2		
		11.3	11.3.1	PO11	1
		12.2	12.2.1	PO12	2
CSC 403.3 Write relational algebra queries.	L4,L5	1.4	1.4.1	PO1	3
		2.1.	2.1.2	PO2	3
		9.2	9.2.3	PO9	2
		10.1.	10.1.1	PO10	1
		11.3	11.3.1	PO11	1
		12.2	12.2.1	PO12	2

	Т	ı	ı	ı	1
CSC 403.4 Formulate SQL queries	L4,L5	1.4	1.4.1	PO1	3
		2.1.	2.1.2	PO2	3
		3.3	3.3.1	PO3	3
		4.1.	4.1.2	PO4	2
		5.5	5.2.2	PO5	3
		10.1.	10.1.1	PO10	2
		11.3	11.3.1	PO11	1
		12.2	12.2.1	PO12	2
CSC 403.5 Analyze and apply concepts of normalization to relational database design.	L3,L4	1.4	1.4.1	PO1	3
		2.1.	2.1.2	PO2	3
		3.3	3.3.1	PO3	3
		9.2	9.2.3	PO4	2
		10.1.	10.1.1	PO10	2
		11.3	11.3.1	PO11	1
		12.2	12.2.1	PO12	2
CSC 403.6 Describe and apply the concept of transaction, concurrency and	L1,L2,L4		1.4.1	PO1	3
recovery		2.1.	2.1.2	PO2	3
		3.3	3.3.1	PO3	3
		4.1	4.1.1	PO4	2
		5.2	5.2.2	PO5	2

	9.2	9.2.3	PO9	2
	10.1	10.1.1	PO10	1
	11.3	11.3.1	PO11	1
	12.2	12.2.1	PO12	1

Mapping of CO and PO/PSO

Relationship of course outcomes with program outcomes: Indicate 1 (low importance), 2 (Moderate Importance) or 3 (High Importance) in respective mapping cell.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	(Engg	(Ana)	(De	(inve	(tools)	(engg	(Env)	(Eth)	(ind/	(comm.)	(PM)	(Life
	Know)		sign)	stiga)		Soci)			Team)			Long)
CSC403.1	3											2
CSC403.2	3	3	3						2	2	1	2
CSC403.3	3	3							2	1	1	2
CSC403.4	3	3	3	2	3				2	2	1	2
CSC403.5	3	3	3						2	2	1	2
CSC403.6	3	3	3	2	2				2	2	1	2
Course	3	3	3		3				2	2	1	1
To PO												
PO												
ATTAINMENT												

CO	PSO1(Develop	PSO2(Apply CS
	AIML)	to protect IS
	,	assets)
CSC402.1	1	
CSC402.2	1	1
CSC402.3	1	1
CSC402.4	2	1
CSC402.5	1	1
CSC402.6	1	2
Course to PSO		

CO Assessment Tools:

Method	Direct(80%	Indirect(20%)			
	Internal (40	%)		External(60%)	
Со	Test Assignment Quizzes		Quizzes	End Sem Exam	Course Exit
					Survey
CSC403.1	0.2*UT1	0.1*A1	0.1*Q1	0.6	1
CSC403.2	0.2*UT1	0.1*A1	0.1*Q1	0.6	1
CSC403.3	0.2*UT1	0.1*A1	0.1*Q1	0.6	1
CSC403.4	0.2*UT1	0.1*A1	0.1*Q1	0.6	1
CSC403.5	0.2*UT2	0.2*A2	0.1*Q2	0.6	1
CSC403.6	0.2*UT2	0.1*A2	0.1*Q2	0.6	1

Attainment:

CO CSC403.1:

Direct Method

$$A_{\text{CSC403.1D}} = 0.2 * Test1 + 0.1 * Assignment + 0.1 * Quizzes + 0.6 * SEE_Theory$$

Final Attainment:

$$A_{\text{CSC403.1}} = 0.8 * A_{\text{CSC403.1}D} + 0.2 * A_{\text{CSC403.1}I}$$

CO CSC403.2:

Direct Method

$$A_{\text{CSC403.2D}} = 0.2 * Test1 + 0.1 * Assignment + 0.1 * Quizzes + 0.6 * SEE_Theory$$

Final Attainment:

$$A_{\text{CSC403.2}} = 0.8 * A_{\text{CSC403.2}D} + 0.2 * A_{\text{CSC403.2}I}$$

CO CSC403.3:

Direct Method

$$A_{\text{CSC403.3D}} = 0.2 * Test1 + 0.1 * Assignment + 0.1 * Quizzes + 0.6 * SEE_Theory$$

Final Attainment:

$$A_{\text{CSC403.3}} = 0.8 * A_{\text{CSC403.3}D} + 0.2 * A_{\text{CSC403.3}I}$$

CO CSC403.4:

Direct Method

$$A_{\text{CSC403.4D}} = 0.2 * Test2 + 0.1 * Assignment + 0.1 * Quizzes + 0.6 * SEE_Theory$$

Final Attainment:

$$A_{\text{CSC403.4}} = 0.8 * A_{\text{CSC403.4D}} + 0.2 * A_{\text{CSC403.4I}}$$

CO CSC403.5:

Direct Method

$$A_{\text{CSC403.5D}} = 0.2 * Test2 + 0.1 * Assignment + 0.1 * Quizzes + 0.6 * SEE_Theory$$

Final Attainment:

$$A_{\text{CSC403.5}} = 0.8 * A_{\text{CSC403.5}D} + 0.2 * A_{\text{CSC403.5}I}$$

Content Beyond Syllabus:

Database System Architectures -Distributed Database

Curriculum Gap:

Distributed Database system is not included in this revised syllabus of 2019. It is important from the perspective of Data mining and warehouse where system need to integrate heterogeneous / homogenous databases from different locations. Mapped with PO12 AND PSO1

FR. Conceicao Rodrigues College Of Engineering

Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50

Department of Computer Engineering (2023-2024) Lesson Plan

CLASS-SEM: S.E.- IV COMP B Credits-4
SUBJECT: Database Management Systems (DBMS) SUBJECT CODE- CSC403

Professor: Prof.Jagruti Nagaonkar

Modes of Content Delivery:

i	Online	v	Self Learning Online	Ix	Industry Visit/Technical Paper
	Teaching		Resources		presentation in class
ii	Tutorial	vi	Slides, PPT	X	Group Discussion
iii	Remedial	vii	Simulations/Demonstrations	xi	Seminar
	Coaching				
iv	Lab Experiment	viii	Expert Lecture	xii	Case Study

Lect. No.	Cha p.no	Portion to be covered	Planned date	Actual date	Content Delivery Method/ Learning Activities
	Introd	luction Database concept			
1	1	Introduction, File system V/s Database system, adv and disadv., Characteristics of databases, Users of Database system, Roles of Database Administrator	9.1.2024		PPT
2		Data Independence , Architecture	10.1.2024		PPT
3		Schema, instance, Data Independence, levels of abstraction	12.1.2024		PPT
		Relationship Data model		•	1
4	2	ER Diagrams basics, Problem statement for ER diagram	16.1.2024		PPT
5		EER Diagrams, Explanation plus problem statement, Specialization & Generalization	17.1.2024		PPT
6		Convert Problem statements into ER Diagram	19.1.2024		PPT, Open Discussion with Students

-		elational Model and relational algebra	I	
7	3.1	Introduction to the Relational Model, relational schema and concept of keys	23.1.2024	PPT
3	3.2	Mapping the ER and EER Model to the Relational Model	24.1.2024	PPT
9	3.3	Relational Algebra – unary and set operations, Relational Algebra Queries.	25.1.2024	PPT
10	3.4	Problems based on Relational Algebra	30.1.2024	PPT
	Str	uctured Query Language		<u> </u>
11	4	Structured Query Language (DDL), Structured Query Language (DML) Select ,Insert,Update,Delete	31.1.2024	PPT, demonstration of experiment
12		Structured Query language(DDL) Alter,Drop,Truncate, Distinct,Order By	1.2.2024	PPT, demonstration of experiment
		5 ,6 and & 7 Feb 202	24 UT1	<u> </u>
13		Structured Query language(DML) Aggregate Functions, Simple Sub Query ,GroupBy ,Having	8.2.2024	PPT
14		Sql SET Operations(IN,ANY,ALL), BETWEEN and NOT BETWEEN,IS NULL and IS NOT NULL	13.2.2024	PPT
15		SQL JOINS (INNER ,OUTER(LEFT RIGHT FULL)	14.2.2024	PPT
16		Nested and complex queries with examples, Views in SQL	15.2.2024	PPT
		20-23 Feb 2024 Cre	escendo	
17		Integrity constraints :- key constraints, Domain Constraints, Referential, integrity, check constraints	27.2.2024	PPT
18		Different Keys in DBMS with	28.2.2024	PPT
19		Example Triggers	29.2.2024	PPT
Relati	onal Dat	abase Design		
20	5	Relational–Database Design	5.3.2024	

(1-				
		Design guidelines for relational schema, Function dependencies,		PPT
21		Function dependencies, Identifying candidate keys from given FD's	6.3.2024	PPT
22		Need of normalization, Lossless join and Functional dependency preserving property	7.3.2024	PPT
23		Normal Forms- 1NF, 2 NF, 3NF	12.3.2024	PPT
24		Examples on 1NF,2NF,3NF,BCNF and Finding Candidate keys	13.3.2024	Open Discussion with Students
	14 -18	March 2024 Euphoria		·
Tuonge	otion m	paragrament and consumerous and		
recove		anagement and concurrency and		
25	6	Transaction concept, Transaction states, ACID properties,	19.3.2024	PPT
26		Concurrent Executions, Recoverability, Serializability	20.3.2024	PPT
27		Concurrency Control: Lock based protocols	21.3.2024	PPT
28		Concurrency Control: Timestamp-based protocols	26.3.2024	PPT
29		Log based recovery, Deadlock handling	27.3.2024	PPT
30		University problems on conflict and view Serializability	28.3.2024	PPT
		1,2 and 3 April 2024 UT2		
31		Content Beyond Syllabus	4.4.2024	Discussion withstudents ,PPT
32		,	10.4.2024	Concept revision and Activity of Crossword
33		Remedial and Revision	16.4.2024	Discussion with students ,PPT

Text Books/ Reference Books:

TextBooks:

- 1. G. K. Gupta: "Database Management Systems", McGraw Hill.
- 2. Korth, Slberchatz, Sudarshan, :"Database System Concepts", 6th Edition, McGraw Hill
- 3. Elmasri and Navathe, "Fundamentals of Database Systems", 5thEdition, PEARSON Education.
- 4. Peter Rob and Carlos Coronel, "Database Systems Design, Implementation and Management", Thomson Learning, 5th Edition.

Reference Books:

- 1. Dr. P.S. Deshpande, SQL and PL/SQL for Oracle 10g, Black Book, Dreamtech Press
- 2. Mark L. Gillenson, Paulraj Ponniah, "Introduction to Database Management", Wiley
- 3. Sharaman Shah, "Oracle for Professional", SPD.
- 4. Raghu Ramkrishnan and Johannes Gehrke, "Database Management Systems", TMH
- 5. Debabrata Sahoo "Database Management Systems" Tata McGraw Hill, Schaum's Outline

Online Resources:

- 1) https://www.db-book.com/db6/slide-dir/index.html- Korth, Slberchatz, Sudarshan, 6th Edition
- 2) http://www.tutorialspoint.com/sql/ (Weak students)
- 3) https://www.w3schools.com/sql/default.asp
- 4) http://www.mysqltutorial.org/ or https://www.tutorialspoint.com/postgresql/
- 5) https://academy.vertabelo.com/course/standard-sql-functions# (Strong students)
- 6) www.postgresqltutorial.com/postgresql-grouping-sets/ (Strong students)
- 7) www.postgresqltutorial.com
- 8) https://www.freeprojectz.com/entity-relationship-diagram
- 9) https://www.w3schools.com/sql/sql any all.asp
- 10) https://www.geeksforgeeks.org/sql-all-and-any/
- 11) Data Base Management System Course (nptel.ac.in)
- 1. Students should focus on following points to Learn **SQL online**
- Basic SQL commands to manipulate data stored in relational databases
- The most commonly used SQL commands to query a table in a database
- Using SQL to perform calculations during a query
- Querying multiple tables using joins
- Explore more about Triggers and functions and procedures

Evaluation Scheme

CIE Scheme

Internal Assessment: 20 (Average of two tests)

Internal Assessment Scheme

Module		Lecture Hours	No. of questions in Test 1 Test 2		No. of questions in SEE
1	Introduction Database concept	03	01 (5 marks)		
2	Entity Relationship Data model	06	01 (5 marks)		
3	Relational Model and relational algebra	08	01 (5 Marks)	01 (5 Marks)	
4	Structured Query Language	06	01 (5 marks)		
5	Relational Database Design	06		02 (5 Marks Each)	
6	Transaction management and concurrency and recovery	10		02 (5 Marks Each)	

Note: Four to six questions will be set in the Test paper